

Math Virtual Learning HS/Essential Math II

April 27, 2020

High School/Essentials of Algebra Course 2 Lesson: April 22, 2020(U5L7 Solving Equations One Chunk at a Time)

Objective/Learning Target:

Student will solve equations using properties of operations and the logic of preserving equality.

DIRECTIONS:

- Scroll through each page
- Read each page
- Attempt each problem on a sheet of paper or in a math notebook/journal

Bellwork

20,•		30,•
15,+		┢
_	24,•	-

 \odot

Bellwork Answer Key

0	MysteryGrid 4, 5, 6						
	20,• 4	5	30,• 6				
	15,+ 6	4	5				
	5	24,• 6	4				

Lesson

Solving with Squares

Guess & Test: Playing with Numbers 0 - 9

You need numbers that multiply and sum to different numbers but max out at 9.

1 * 1 = 1 Cannot work because the product must be different from factors. 2 * 2 = 4 2 + 2 = 4 Cannot work because the sum & product cannot equal. You need numbers that multiply and sum to different numbers but max out at 9.

1 is the only number you can multiply by and get the same number.

2 * 2 = 4 2 + 2 = 4 Cannot work because the sum & product cannot equal.

9	Instructions	Record	Jacob	Lena	Asher	Imani	Carla
	Think of a number.		4			-1	
				-3	-1		
				Per a			
		$(b - 1)^2 + 7$	16		8	11	7

9) Instructions	Record	Jacob	Lena	Asher	Imani	Carla
Addition undoes	Think of a number.	Ь	4	-2	0	-1	1
subtraction Square root	Subtract 1.	b – 1	3	-3	-1	-2	0
undoes quaring Subtraction	Square the result.	(b – 1)2	9	9	1	4	0
undoes Addition	Add 7.	$(b - 1)^2 + 7$	16	16	8	11	7
	Order of Operations What happens first and follows?	Reverse Engineer What happens lastsstep by step?		Zero is nor	neither negativ	positive e &	

Positive & negative.

Add 7.	$(b - 1)^2 + 7$	16	16	8	11	7	
--------	-----------------	----	----	---	----	---	--

Hiroshi worked through the trick above and got 8 as his final result. What two numbers could he have been thinking of? Hiroshi worked through the trick above and got 8 as his final result. What two numbers could he have been thinking of?

$(b - 1)^2 + 7 = 8$	So:	b - 1 = -1	OR	b - 1 = 1
$(b - 1)^2 = 1$		b = 0	OR	b = 2

Hiroshi was thinking of either 0 (like Asher) or 2.

- Damian thought of a number, subtracted 8, squared the result, and got 49 as his final result. What two numbers could he have been thinking of?
- Maria thought of a number, added 3, squared the result, and subtracted 2. She got 79 as her final result. What two numbers could she have been thinking of?

Damian thought of a number, subtracted 8, squared the result, and got 49 as his final result. What two numbers could he have been thinking of?

(Methods may vary for 14 and 15.)

 $(n-8)^2 = 49$

n - 8 = 7 OR n - 8 = -7

n = 15 OR n = 1

Maria thought of a number, added 3, squared the result, and subtracted 2. She got 79 as her final result. What two numbers could she have been thinking of?

$$(n+3)^2 - 2 = 79$$

$$(n + 3)^2 = 81$$

- n + 3 = 9 OR n + 3 = -9
- n = 6 OR n = -12

Stuff to Make You Think...

Click on the link below to practice solving Mystery Grid problems electronically. You should practice until you have solved 2 or 3 puzzles on your own.

http://www.kenkenpuzzle.com/game

Who Am I?

• I'm not an even number.

• At least two of my digits

are even.

- My units digit is half of my tens digit.
- All three of my digits are different.
- My hundreds digit is twice the sum of my units digit and my tens digit.

Who Am I?

- I'm not an even number.
- At least two of my digits

are even.

- My units digit is half of my tens digit.
- All three of my digits are different.
- My hundreds digit is twice the sum of my units digit and my tens digit.

- Not an even means unit is 1,3, 5,7, or 9
- At least two my of digits are even means hundreds and tens are either 0, 2,4,6,or 8 AND hundreds is not zero
- Units is half tens digit means the units is either 1 or 3 and tens is 2 or 6
- Hundreds digit is twice sum of units digit and tens digit means h = 2(u+t)

30
$$(m+5)(4m-7-3m) =$$

31
$$(7b+2c)(5c-8b) =$$

(3)
$$(7b+2c)(5c-8b) = 19bc - 56b^2 + 10c^2$$

5c -8b
7b 35bc -56b²
2c 10c² -16bc

33 Fill in the empty spaces. $(X + 9)(X + 8) = x^2 + 17x + 72$ or vice versa (x+8)(x+9)

Additional Practice

G
$$5(12-x)^2 = 45$$

H
$$\frac{(b+9)^2}{2} = 8$$

Cover all but the last instruction and the final result to undo each instruction of the trick in reverse order.

	12-9 = 3 x=9		12-15= -3 x= 15	
	X = 9	OR	x = 15	
	12 - X = 3	OR	$\frac{12}{+3} - \chi = -3$	
	$(12 - x)^2 = c^2$	1 1	$\overline{9}=3$ or -3	
G	$5(12-x)^2 = 45$	$\frac{45}{5} = 9$)	

$$\begin{array}{l} \textcircled{\textbf{H}} \quad \frac{(b+9)^2}{2} = 8 \quad 8 \ge 2 = 16 \\ (b+9)^2 = 16 \quad \sqrt{16} = 4 \quad \text{or} \quad -4 \\ b = -9 \quad -9 \quad -9 \quad 0 \\ b = -9 \quad 0 \\ b = -9 \quad 0 \\ b = -4 \quad 0 \\ b = -13 \\ -5 + 9 = 4 \quad -13 + 9 = -4 \end{array}$$

Additional Practice 2

① Jessica thought of a number, subtracted 7, squared the result, and got 25 as her final result. Find both possibilities for the number she thought of.

 Jessica thought of a number, subtracted 7, squared the result, and got 25 as her final result. Find both possibilities for the number she thought of.

 $(n-7)^2 = 25$ $\sqrt{25} = 5 \text{ or } -5$ $n-7^2 = 5^{+7}$ OR $n-7^2 = -5^{+7}$

n = 12 OR n = 2

Additional Practice 3

Michael thought of a number, doubled it, added 3, squared the result, and got 81 as his final result.
 Find both possibilities for the number he thought of.

Answer Key 3

Michael thought of a number, doubled it, added 3, squared the result, and got 81 as his final result.
 Find both possibilities for the number he thought of.

$$(2n + 3)^{2} = 81 \sqrt{81} = 9 \text{ or } -9$$

$$2n + 3^{3} = 9^{-3} \quad OR \quad 2n + 3^{3} = -9^{3}$$

$$\frac{2n = 6}{2} \quad OR \quad \frac{2n = -12}{2}$$

$$n = 3 \quad OR \quad n = -6$$

Additional Resources

Student will solve equations using properties of operations and the logic of preserving equality.

CLICK THE LINKS BELOW FOR ADDITIONAL PRACTICE: <u>SolveMe Mobiles</u>

Who Am I? Puzzles

Solve Me Mystery Grids

