Math Virtual Learning

HS/Essential Math II

April 27, 2020

High School/Essentials of Algebra Course 2
Lesson: April 22, 2020(U5L7 Solving Equations One Chunk at a Time)

Objective/Learning Target:

Student will solve equations using properties of operations and the logic of preserving equality.

DIRECTIONS:

- Scroll through each page
- Read each page
- Attempt each problem on a sheet of paper or in a math notebook/journal

(I) MysteryGrid 1, 2, $\mathbf{3}$
(3)
MysteryGrid 4, 5, 6

$20, \bullet$		$30, \bullet$
$15,+$		
	$24, \bullet$	

(K) MysteryGrid 2, 3, 5

Bellwork Answer Key

(I)

MysteryGrid 1, 2, 3

(J)

MysteryGrid 4, 5, 6

MysteryGrid 2, 3, 5

Lesson

Solving with Squares

Guess \& Test: Playing with Numbers 0-9

(7) What could , φ, and be if all the variables represent different single-digit whole numbers?

\qquad $4=$
\qquad
\qquad
(8) What could $\boldsymbol{\nabla}, \boldsymbol{\sigma}$, and be if all the variables represent different whole numbers?

\cdots \qquad
$\sigma=$ \qquad
$=$ \qquad
(7) What could , $\$$, and be if all the variables represent different single-digit whole numbers?

- $\cdot \boldsymbol{p}$
 - $=$ C

$$
\begin{aligned}
& ==3 \\
& \beta=\frac{9}{8}=6 \\
& C=6
\end{aligned}
$$

(8) What could \rangle, σ, and be if all the variables represent different whole numbers?

$$
\nabla \cdot \sigma=\sigma
$$

$$
\sigma \cdot \sigma=
$$

$$
\sigma+\omega=
$$

$$
\begin{aligned}
\boldsymbol{v} & =\frac{1}{2} \\
\boldsymbol{v} & =\frac{2}{4} \\
& =
\end{aligned}
$$

You need numbers that multiply and sum to different numbers but max out at 9 .

1 * $1=1$
Cannot work because the product must be different from factors.

$$
2 * 2=4
$$

$$
2+2=4
$$

Cannot work because the sum \& product cannot equal.

You need numbers that multiply and sum to different numbers but max out at 9 .

1 is the only number you can multiply by and get the same number.

$$
\begin{aligned}
& 2 * 2=4 \\
& 2+2=4
\end{aligned}
$$

Cannot work because the sum \& product cannot equal.

Instructions	Record	Jacob	Lena	Asher	Imani	Carla
Think of a number.		4			-1	
			-3	-1		
	$(b-1)^{2}+7$	16		8	11	7

Hiroshi worked through the trick above and got 8 as his final result. What two numbers could he have been thinking of?

Hiroshi worked through the trick above and got 8 as his final result.
What two numbers could he have been thinking of?

$$
\begin{array}{ll}
(b-1)^{2}+7=8 & \text { So: } b-1=-1 \text { OR } b-1=1 \\
(b-1)^{2}=1 & b=0
\end{array} \text { OR b=2}
$$

Hiroshi was thinking of either 0 (like Asher) or 2.
(13) Damian thought of a number, subtracted 8 , squared the result, and got 49 as his final result. What two numbers could he have been thinking of?
(14) Maria thought of a number, added 3, squared the result, and subtracted 2 . She got 79 as her final result. What two numbers could she have been thinking of?
(13) Damian thought of a number, subtracted 8 , squared the result, and got 49 as his final result. What two numbers could he have been thinking of?
(Methods may vary for 14 and 15.)

$$
(n-8)^{2}=49
$$

$n-8=7 \quad$ OR $\quad n-8=-7$
$n=15$
OR $n=1$
(14) Maria thought of a number, added 3, squared the result, and subtracted 2. She got 79 as her final result. What two numbers could she have been thinking of?
$(n+3)^{2}-2=79$
$(n+3)^{2}=81$
$n+3=9 \quad$ OR $\quad n+3=-9$
$n=6 \quad$ OR $n=-12$

Stuff to Make You Think...

Click on the link below to practice solving Mystery Grid problems electronically. You should practice until you have solved 2 or 3 puzzles on your own.

http://www.kenkenpuzzle.com/game

(28) Who Am I?

- I'm not an even number.
- At least two of my digits are even.
- My units digit is half of my tens digit.
- All three of my digits are different.
- My hundreds digit is twice the sum of my units digit and my tens digit.

Who Am I?

- I'm not an even number.

- At least two of my digits are even.
- My units digit is half of my tens digit.
- All three of my digits are different.
- My hundreds digit is twice the sum of my units digit and my tens digit.
- Not an even means unit is $1,3,5,7$, or 9
- At least two my of digits are even means hundreds and tens are either $0,2,4,6$, or 8 AND hundreds is not zero
- Units is half tens digit means the units is either 1 or 3 and tens is 2 or 6
- Hundreds digit is twice sum of units digit and tens digit means $h=2(u+t)$

(29)

$$
\begin{aligned}
& 25-4=21 \text { then } \\
& 21 / 3=7
\end{aligned}
$$

$$
\boldsymbol{\theta}=4 \quad v=7 \quad v=1
$$

(30) $(m+5)(4 m-7-3 m)=$
(31) $(7 b+2 c)(5 c-8 b)=$

$$
\begin{gathered}
(m+5)(4 m-7-3 m)= \\
4 m-7
\end{gathered} \frac{m^{2}-2 m-35}{-3 m}
$$

m

$4 m^{2}$	$-7 m$	$-3 m^{2}$
$20 m$	-35	$-15 m$

(37) $(7 b+2 c)(5 c-8 b)=19 b c-56 b^{2}+10 c^{2}$

	$5 c$	$-8 b$
7	$35 b c$	$-56 b^{2}$
$2 c \mid$	$10 c^{2}$	$-16 b c$

(32) What could $\bigcirc, \boldsymbol{\Delta}, \boldsymbol{\mathcal { N }}, \boldsymbol{\vartheta}$, and \mathbf{b} be if all the shapes are different single-digit numbers $(0-9)$? $O \cdot O=0$
$\boldsymbol{X}+\boldsymbol{\Delta}=\boldsymbol{\Delta}$
$0+\boldsymbol{x}=\boldsymbol{\bullet}$
$\boldsymbol{x}+\boldsymbol{x}=\boldsymbol{C}$
$\boldsymbol{x} \cdot \boldsymbol{X}=\boldsymbol{C}$

(33) Fill in the empty spaces.

(32) What could $\mathrm{O}, \boldsymbol{\Delta}, \boldsymbol{N}, \boldsymbol{\cup}$, and b be if all the shapes are different single-digit numbers ($0-9$)?
$\mathrm{O} \cdot \mathrm{O}=\mathrm{O}$

$$
\boldsymbol{\Delta}+\boldsymbol{\Delta}=\boldsymbol{\Delta}
$$

$$
O+\boldsymbol{X}=\boldsymbol{\varphi}
$$

$$
\boldsymbol{X}+\boldsymbol{X}=\mathbf{C}
$$

$$
\boldsymbol{x} \cdot \boldsymbol{x}=\mathbf{C}
$$

$$
\begin{aligned}
& 0=\frac{1}{0} \\
& \boldsymbol{\Delta}=\frac{0}{2} \\
& \boldsymbol{x}=\frac{2}{3} \\
& \boldsymbol{v}=\frac{3}{} \\
& \boldsymbol{C}=4
\end{aligned}
$$

(33) Fill in the empty spaces.

$(\underline{x}+\underline{9})(\underline{x}+\underline{8})=x^{2}+17 x+72$ or vice versa $(x+8)(x+9)$

Additional Practice

5
 Additional Practice 1

(G) $5(12-x)^{2}=45$
(A) $\frac{(b+9)^{2}}{2}=8$

Cover all but the last instruction and the final result to undo each instruction of the trick in reverse order.

Practice 1 Key

(G) $5(12-x)^{2}=45 \quad \frac{45}{5}=9$

$$
\begin{aligned}
& (12-x)^{2}=9 \quad \sqrt{9}=3 \text { or }-3 \\
& \underset{-3}{12}-x=\begin{array}{c}
3 \\
-3
\end{array} \quad \text { OR } \underset{+3}{12}-x=\begin{array}{r}
-3 \\
+3
\end{array} \\
& x=9 \\
& \text { 12-9 = } 3 \\
& \mathrm{x}=9
\end{aligned}
$$

(H) $\frac{(b+9)^{2}}{2}=8 \quad 8 \times 2=\mathbf{1 6}$

$$
(b+9)^{2}=16 \sqrt{16}=4 \text { or }-4
$$

$$
b+9=-\frac{-9}{-9} \quad \text { OR } \quad b+9=-9
$$

$$
b=-5
$$

$$
O R \quad b=-13
$$

$$
-5+9=4
$$

$$
-13+9=-4
$$

Additional Practice 2

(I) Jessica thought of a number, subtracted 7, squared the result, and got 25 as her final result. Find both possibilities for the number she thought of.

Answer Key 2

(I) Jessica thought of a number, subtracted 7, squared the result, and got 25 as her final result. Find both possibilities for the number she thought of.

\[

\]

Additional Practice 3

(3) Michael thought of a number, doubled it, added 3, squared the result, and got 81 as his final result. Find both possibilities for the number he thought of.

Answer Key 3
(3) Michael thought of a number, doubled it, added 3, squared the result, and got 81 as his final result. Find both possibilities for the number he thought of.

$$
\begin{array}{lll}
(2 n+3)^{2}=81 & \sqrt{81}=9 \text { or }-9 \\
2 n+3+^{-3}=9^{-3} & \text { OR } & 2 n+3^{-3}=-9^{-3} \\
\frac{2 n=6}{2} & \text { OR } & \frac{2 n=-12}{2} \\
n=3 & \text { OR } & n=-6
\end{array}
$$

Additional Resources

Student will solve equations using properties of operations and the logic of preserving equality.

CLICK THE LINKS BELOW FOR ADDITIONAL

 PRACTICE:SolveMe Mobiles

Who Am I? Puzzles

Solve Me Mystery Grids

